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RESUMO  
A transição energética global para descarbonização tem posicionado o hidrogênio verde como vetor 
estratégico para alcançar emissões líquidas zero. Este estudo desenvolve e avalia uma arquitetura de 
automação e instrumentação baseada em Internet das Coisas (IoT) para monitoramento remoto de 
sistemas de produção de hidrogênio verde por eletrólise da água. Foi implementado um sistema inte-
grado contemplando camadas de sensoriamento inteligente, controle por microcontrolador ESP32, co-
municação via protocolo MQTT e supervisão através de plataforma SCADA web. O modelo matemático 
do eletrolisador PEM foi desenvolvido e validado, simulando operação sob diferentes condições de tem-
peratura (50-80°C), pressão (1-3 bar) e densidade de corrente (0,2-1,8 A/cm²). Sensores virtuais de 
temperatura (PT100), pressão (piezoresistivos), vazão (Coriolis) e parâmetros elétricos foram integra-
dos ao sistema. Os resultados demonstraram eficiência energética de 65,3 ± 1,8% a 70°C e 2 bar, com 
densidade de potência de 0,78 W/cm² a 0,6 V. O sistema IoT apresentou latência média de 127 ms e 
disponibilidade de 99,7% durante 720 horas de simulação contínua. A integração OPC-UA over MQTT 
permitiu transmissão segura de 2.880 variáveis de processo com taxa de perda de pacotes inferior a 
0,03%. O dashboard SCADA desenvolvido em Node-RED possibilitou visualização em tempo real e aná-
lise histórica com armazenamento em banco InfluxDB. Os achados demonstram viabilidade técnica da 
arquitetura proposta para escalabilidade industrial, contribuindo para otimização energética e redução 
de custos operacionais em plantas de hidrogênio verde. 
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AUTOMATION AND IOT-BASED INSTRUMENTATION FOR REMOTE MO-

NITORING OF GREEN HYDROGEN PRODUCTION SYSTEMS 
 
ABSTRACT  
The global energy transition towards decarbonization has positioned green hydrogen as a strategic 
vector to achieve net-zero emissions. This study develops and evaluates an automation and instrumen-
tation architecture based on Internet of Things (IoT) for remote monitoring of green hydrogen produc-
tion systems via water electrolysis. An integrated system was implemented comprising intelligent sen-
sing layers, ESP32 microcontroller control, MQTT protocol communication, and supervision through a 
web SCADA platform. The PEM electrolyzer mathematical model was developed and validated, simula-
ting operation under different temperature conditions (50-80°C), pressure (1-3 bar), and current density 
(0.2-1.8 A/cm²). Virtual sensors for temperature (PT100), pressure (piezoresistive), flow (Coriolis), and 
electrical parameters were integrated into the system. Results demonstrated energy efficiency of 65.3 
± 1.8% at 70°C and 2 bar, with power density of 0.78 W/cm² at 0.6 V. The IoT system presented 
average latency of 127 ms and availability of 99.7% during 720 hours of continuous simulation. OPC-
UA over MQTT integration enabled secure transmission of 2,880 process variables with packet loss rate 
below 0.03%. The SCADA dashboard developed in Node-RED enabled real-time visualization and histo-
rical analysis with InfluxDB storage. Findings demonstrate technical feasibility of the proposed architec-
ture for industrial scalability, contributing to energy optimization and operational cost reduction in green 
hydrogen plants. 
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1 INTRODUÇÃO  
 

A transição energética global rumo à descarbonização profunda tem posicionado o 

hidrogênio verde como vetor estratégico para alcançar as metas de emissões líquidas zero do 

Acordo de Paris. Projeções indicam que a demanda por hidrogênio como portador de energia 

ultrapassará 350 milhões de toneladas anuais até 2050, impulsionada pela necessidade de 

distribuição e armazenamento sustentáveis de energia renovável (VEDRTNAM; KALAUNI; 

PAHWA, 2025). Nesse contexto, a produção de hidrogênio verde por eletrólise da água utili-

zando eletricidade renovável emerge como rota tecnológica prioritária para setores como 

transporte pesado, indústria química e geração de energia. 

Contudo, a produção de hidrogênio verde enfrenta desafios substanciais relaciona-

dos à eficiência de custos, conformidade operacional, monitoramento contínuo e segurança 

(AGARWAL et al., 2024). Com a eletricidade representando aproximadamente 70% dos custos 

totais de produção (IRENA, 2024), torna-se imperativa a operação baseada em dados para 

otimização de recursos. Sistemas de eletrólise demandam controle preciso sobre parâmetros 

críticos como temperatura, pressão, vazão e variáveis elétricas, cujas flutuações podem resul-

tar em ineficiências operacionais ou danos aos equipamentos (ZAINAL; KER; MOHAMED, 

2024). 

A digitalização industrial através de tecnologias da Indústria 4.0 oferece caminhos 

promissores para superar esses desafios. A integração de Internet das Coisas (IoT), inteligência 

artificial (IA), aprendizado de máquina (ML) e gêmeos digitais em plantas de hidrogênio pos-

sibilita otimização de processos, monitoramento em tempo real, análise preditiva e escalabi-

lidade (FOLGADO; GONZÁLEZ; CALDERÓN, 2023). A IoT, que interconecta bilhões de sensores 

e dispositivos via Internet, viabiliza automação na coleta de dados, análise, tomada de decisão 

e processos de atuação (AGARWAL et al., 2024). 

Os Sistemas de Supervisão e Aquisição de Dados (SCADA) constituem a espinha dorsal 

das operações industriais modernas, fornecendo visibilidade em tempo real, controle e coleta 

de dados em ambientes complexos (PRONTO SYSTEM SOLUTIONS, 2025). O mercado global 

de SCADA, avaliado em US$ 11,01 bilhões em 2023, está projetado para atingir US$ 21,99 

bilhões até 2032, com CAGR de 7,85% (MARKET RESEARCH, 2025). A convergência entre IoT e 

SCADA representa evolução significativa na automação industrial, incorporando computação 

em nuvem, computação de borda e tecnologias sem fio para maior flexibilidade e escalabili-

dade (INDUSTRIAL AUTOMATION CO., 2024). 

Estudos recentes demonstram a aplicabilidade de arquiteturas IoT compatíveis com 

a Indústria 4.0 para hidrogênio verde. Folgado, González e Calderón (2023) desenvolveram 

sistema IIoT para geradores de hidrogênio PEM, integrando arrays fotovoltaicos, eletrolisado-

res e armazenamento através de plataformas SCADA baseadas em Node-RED e protocolos 

Modbus. Wang et al. (2022) implementaram controle preditivo baseado em ML para otimiza-

ção de eficiência energética, alcançando redução de 12,5% no consumo específico de energia. 
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Apesar desses avanços, lacunas significativas persistem na literatura. A maioria dos 

sistemas de produção de hidrogênio verde ainda utiliza arquiteturas de controle locais com 

conectividade limitada, dificultando o monitoramento remoto, análise histórica e tomada de 

decisão em tempo real baseada em múltiplas variáveis do processo (VEDRTNAM; KALAUNI; 

PAHWA, 2025). Adicionalmente, há carência de estudos que integrem holisticamente senso-

riamento inteligente, protocolos de comunicação industrial, plataformas SCADA modernas e 

modelagem matemática detalhada para simulação e otimização de sistemas de eletrólise. 

Diante disso, o objetivo geral deste trabalho é desenvolver e avaliar uma arquitetura 

de automação e instrumentação baseada em IoT para monitoramento remoto de sistemas de 

produção de hidrogênio verde por eletrólise da água, utilizando modelagem matemática e 

simulação computacional. 

A contribuição científica deste estudo reside na proposição de arquitetura replicável 

e escalável que integra tecnologias consolidadas de automação industrial com paradigmas 

emergentes de IoT e Indústria 4.0, aplicadas especificamente à produção de hidrogênio verde 

através de modelagem e simulação. Os resultados fornecerão subsídios técnicos para otimi-

zação de eficiência energética, aumento de segurança operacional e redução de custos ope-

racionais em plantas de eletrólise, contribuindo para a viabilização econômica da economia 

do hidrogênio verde. 

 

2 PRODUÇÃO DE HIDROGÊNIO VERDE POR ELETRÓLISE 

2.1 Princípios da Eletrólise da Água 

A eletrólise da água consiste na decomposição de moléculas de H₂O em hidrogênio 

e oxigênio através da aplicação de corrente elétrica. As reações eletroquímicas ocorrem em 

dois eletrodos: no cátodo, a reação de evolução de hidrogênio (HER, do inglês Hydrogen 

Evolution Reaction) processa-se segundo 2H₂O + 2e⁻ → H₂ + 2OH⁻; no ânodo, a reação de 

evolução de oxigênio (OER, do inglês Oxygen Evolution Reaction) segue 4OH⁻ → O₂ + 2H₂O + 

4e⁻ (LI et al., 2025). A tensão teórica mínima para decomposição da água em condições pa-

drão (25°C, 1 atm) é 1,23 V, derivada da energia livre de Gibbs da reação global. Entretanto, 

devido a irreversibilidades termodinâmicas e cinéticas, a tensão operacional típica situa-se 

entre 1,8-2,2 V, resultando em consumo energético de 39-50 kWh/kg H₂ dependendo da efi-

ciência do sistema (60-80%) (VEDRTNAM; KALAUNI; PAHWA, 2025). 

As variáveis críticas que influenciam o desempenho da eletrólise incluem tempera-

tura, pressão e densidade de corrente. O aumento da temperatura reduz a sobretensão de 

ativação através da aceleração da cinética das reações eletroquímicas, melhorando a condu-

tividade iônica do eletrólito. A elevação da pressão operacional favorece o armazenamento 

direto do hidrogênio produzido, reduzindo custos de compressão subsequente.  
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A densidade de corrente determina a taxa de produção de hidrogênio, porém valo-

res excessivos intensificam perdas ôhmicas e de transporte de massa (LI et al., 2025). 

2.2 Tipos de Eletrolisadores 

Os eletrolisadores classificam-se em três categorias principais conforme a tecnolo-

gia de eletrólito empregada. Os eletrolisadores alcalinos (AWE, do inglês Alkaline Water Elec-

trolysis) utilizam solução aquosa de hidróxido de potássio (KOH) 30-40% como eletrólito, 

operando tipicamente a 60-80°C e pressões de 1-30 bar. Constituem a tecnologia mais ma-

dura comercialmente, com eficiência de 60-70% e vida útil superior a 60.000 horas. As prin-

cipais vantagens incluem baixo custo de catalisadores (níquel) e longa durabilidade; as des-

vantagens compreendem menor densidade de corrente (0,2-0,4 A/cm²) e necessidade de 

gestão de eletrólito corrosivo (ZAINAL; KER; MOHAMED, 2024). 

Os eletrolisadores de membrana de troca protônica (PEM, do inglês Proton Ex-

change Membrane) empregam membrana polimérica (tipicamente Nafion) como eletrólito 

sólido, permitindo operação a 50-80°C e densidades de corrente elevadas (1-3 A/cm²). A efi-

ciência situa-se em 65-75%, com vida útil de 40.000-80.000 horas. Vantagens incluem res-

posta dinâmica rápida (adequada para integração com fontes renováveis intermitentes), ele-

vada pureza do hidrogênio (>99,99%) e design compacto. Desvantagens abrangem custos 

elevados devido ao uso de catalisadores de metais nobres (platina, irídio) e membranas es-

pecializadas (KIM et al., 2025). 

Os eletrolisadores de membrana de troca aniônica (AEM, do inglês Anion Exchange 

Membrane) representam tecnologia híbrida emergente que combina vantagens dos siste-

mas AWE e PEM. Utilizam membrana de troca aniônica em meio alcalino com concentrações 

reduzidas de KOH (1-4%), possibilitando o uso de catalisadores não-nobres (níquel, cobalto) 

similares aos AWE, mantendo densidades de corrente comparáveis aos PEM. A tecnologia 

encontra-se em estágio de desenvolvimento, com pesquisas focadas na melhoria da estabili-

dade química das membranas e redução de custos (ZAINAL; KER; MOHAMED, 2024). 

2.3 Variáveis de Processo Relevantes para Monitoramento 

2.3.1 Temperatura do Stack 

A temperatura do stack de eletrólise constitui parâmetro crítico que influencia múl-

tiplos aspectos do desempenho do sistema. A faixa operacional varia conforme a tecnologia: 

AWE opera tipicamente entre 60-90°C, PEM entre 50-80°C e eletrolisadores de óxido sólido 

(SOEC) entre 700-900°C (VEDRTNAM et al., 2025).  
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O aumento da temperatura reduz a sobretensão de ativação através da aceleração 

da cinética das reações eletroquímicas, descrita pela equação de Arrhenius. Simultanea-

mente, melhora a condutividade iônica do eletrólito, reduzindo perdas ôhmicas. Em siste-

mas PEM, a temperatura influencia diretamente a condutividade protônica da membrana 

Nafion, que apresenta máximo desempenho na faixa de 60-80°C com adequada hidratação. 

O gerenciamento térmico inadequado pode resultar em degradação acelerada dos 

componentes. Temperaturas excessivas causam desidratação da membrana em sistemas 

PEM, aumentando a resistência interna e formação de hot spots que deterioram o conjunto 

membrana-eletrodos (MEA). Temperaturas insuficientes reduzem a eficiência de conversão 

e podem causar condensação de água nos canais de distribuição de gases. Sensores de tem-

peratura do tipo PT100 ou PT1000 (RTD de platina) são amplamente empregados devido à 

precisão de ±0,15°C e estabilidade em longo prazo (VEDRTNAM et al., 2025). 

2.3.2 Pressão de Hidrogênio e Oxigênio 

A pressão dos gases produzidos constitui variável fundamental para segurança e efi-

ciência energética global do sistema. Eletrolisadores modernos operam em pressões de 1-30 

bar, com sistemas avançados atingindo até 70 bar para redução de custos de compressão 

posterior (ENERGY.GOV, 2024). A elevação da pressão operacional apresenta vantagens ter-

modinâmicas: segundo a equação de Nernst, o aumento da pressão parcial dos produtos re-

duz a tensão reversível da célula em aproximadamente 15 mV por aumento de pressão de 1 

para 30 bar. Adicionalmente, o armazenamento direto do hidrogênio em alta pressão eli-

mina etapas de compressão mecânica, que consomem 10-15% da energia do hidrogênio pro-

duzido. 

Aspectos de segurança demandam monitoramento rigoroso da pressão devido às 

propriedades do hidrogênio. O H₂ forma misturas explosivas com ar na faixa de 4-75% em 

volume, com energia mínima de ignição extremamente baixa (0,017 mJ). Sensores de pres-

são piezoresistivos baseados em strain gauges de silício oferecem precisão de ±0,1% da 

faixa, resposta rápida (<1 ms) e compatibilidade com ambientes explosivos (certificação 

ATEX/IECEx). O mercado de sensores de pressão para aplicações de hidrogênio foi avaliado 

em USD 150 milhões em 2024, com projeção de USD 300 milhões até 2033, refletindo cresci-

mento de 8,5% CAGR (VERIFIED MARKET REPORTS, 2025). 

2.3.3 Vazão de Água e Gases 

O controle estequiométrico da vazão de água alimentada ao eletrolisador e das va-

zões de hidrogênio e oxigênio produzidos é essencial para operação eficiente e segura.  
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A relação estequiométrica ideal é de 9 kg de água para produzir 1 kg de hidrogênio. 

Sensores de vazão mássica por efeito Coriolis oferecem precisão de ±0,1% do valor medido 

com repetibilidade de ±0,05%, permitindo balanços de massa precisos e detecção de vaza-

mentos. A qualidade da água de alimentação deve atender especificações rigorosas: conduti-

vidade < 10 μS/cm, concentração de íons < 5 ppb para prevenir envenenamento dos catalisa-

dores (ENERGY.GOV, 2024). 

2.3.4 Corrente, Tensão e Potência Elétrica 

As variáveis elétricas constituem os principais indicadores de desempenho do ele-

trolisador. A densidade de corrente, definida como corrente por unidade de área ativa do 

eletrodo (A/cm²), determina diretamente a taxa de produção de hidrogênio segundo a lei de 

Faraday: ṁH₂ = (I × M)/(n × F), onde I é a corrente total, M a massa molar do H₂ (2,016 

g/mol), n o número de elétrons transferidos (2) e F a constante de Faraday (96.485 C/mol). 

Sistemas PEM modernos operam tipicamente na faixa de 1-2 A/cm² (LI et al., 2025). 

A eficiência faradaica, definida como a razão entre a quantidade de hidrogênio efe-

tivamente produzida e a quantidade teórica calculada pela lei de Faraday, deve exceder 95% 

em sistemas bem projetados. A eficiência energética global relaciona a energia contida no 

hidrogênio produzido (com base no PCI de 120 MJ/kg ou 33,3 kWh/kg) com a energia elé-

trica consumida, situando-se tipicamente entre 60-75% para sistemas PEM (KIM et al., 

2025). 

 

3 AUTOMAÇÃO, INSTRUMENTAÇÃO E IOT EM SISTEMAS ENERGÉTICOS 

 

Sensores inteligentes, protocolos de comunicação industrial e plataformas SCADA 

constituem elementos fundamentais da arquitetura IoT aplicada a sistemas de produção de 

hidrogênio verde. Este capítulo apresenta as tecnologias habilitadoras que permitem moni-

toramento em tempo real, controle distribuído e análise avançada de dados. 

3.1 Sensores Inteligentes Aplicados à Produção de Hidrogênio 

Sensores inteligentes diferem-se de sensores convencionais pela capacidade de pro-

cessamento local de dados, comunicação digital e autodiagnóstico. O mercado global de sen-

sores para aplicações de hidrogênio foi avaliado em USD 374,6 milhões em 2024, com proje-

ção de USD 716,5 milhões até 2034, refletindo CAGR de 6,7% (BUSINESS RESEARCH IN-

SIGHTS, 2024). 
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3.1.1 Sensores de Temperatura 

Detectores de temperatura por resistência (RTD) baseados em platina, designados 

PT100 e PT1000, constituem o padrão industrial para medição de temperatura em sistemas 

de eletrólise. O princípio de operação baseia-se na variação da resistência elétrica da platina 

com a temperatura, descrita por R(T) = R₀[1 + α(T - T₀)], onde R₀ = 100 Ω (PT100) ou 1000 Ω 

(PT1000) a 0°C e α = 0,00385 Ω/Ω/°C. A faixa operacional estende-se de -200°C a +850°C, 

com precisão de ±0,15°C. Termopares tipo K (Cromel-Alumel) oferecem alternativa de me-

nor custo com faixa de -200°C a +1200°C e resposta rápida (<1 s), baseados no efeito See-

beck (ARCHIVE MARKET RESEARCH, 2024). 

3.2 Comunicação Industrial e IoT 

3.2.1 Protocolos Industriais Clássicos 

Modbus constitui o protocolo industrial mais difundido globalmente desde sua cria-

ção em 1979. Opera em arquitetura mestre-escravo, onde um dispositivo mestre solicita da-

dos de dispositivos escravos. Duas variantes são amplamente empregadas: Modbus RTU 

transmite dados em formato binário através de interface serial RS485/RS232, oferecendo ro-

bustez em ambientes industriais ruidosos; Modbus TCP encapsula frames Modbus em paco-

tes TCP/IP, permitindo integração com redes Ethernet. Vantagens incluem simplicidade de 

implementação e ampla compatibilidade. Limitações abrangem ausência de segurança na-

tiva e arquitetura de polling que pode gerar tráfego excessivo (ROBUSTEL, 2025; EMQ, 

2025). 

OPC-UA (Unified Architecture) representa evolução do protocolo OPC clássico, de-

senvolvido pela OPC Foundation como padrão para interoperabilidade na Indústria 4.0. Inde-

pendente de plataforma, opera sobre TCP/IP com modelo cliente-servidor ou publish-subs-

cribe. Vantagens incluem: (i) segurança nativa através de autenticação (X.509 certificates), 

autorização (role-based access control) e criptografia (AES-256); (ii) modelo de informação 

rico e semântico; (iii) descoberta automática de dispositivos. É suportado por grandes fabri-

cantes como Siemens, Beckhoff, KUKA e Rockwell (OPC FOUNDATION, 2025; EMQX, 2025). 

3.2.2 Protocolos IoT 

MQTT (Message Queuing Telemetry Transport) constitui protocolo leve publish-

subscribe, tornado padrão ISO/IEC 20922 em 2016. Opera sobre TCP/IP com arquitetura de 

broker central que gerencia tópicos hierárquicos organizados em estrutura de árvore (ex: 

/plant/electrolyzer/stack01/temperature).  
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Três níveis de Quality of Service (QoS) garantem entrega: QoS 0 (at most once), QoS 

1 (at least once), QoS 2 (exactly once). Vantagens incluem overhead mínimo (cabeçalho de 2 

bytes), adequação para redes de baixa largura de banda e suporte a recursos limitados. É 

amplamente suportado por plataformas cloud: AWS IoT Core, Azure IoT Hub, Google Cloud 

IoT (RTINSIGHTS, 2025; FLOWFUSE, 2025). 

3.2.3 Integração OT-IT: OPC-UA over MQTT 

A especificação OPC-UA PubSub (Publish-Subscribe) parte 14 da norma IEC 62541 

permite transmissão de dados OPC-UA através de protocolos publish-subscribe como MQTT, 

combinando a riqueza semântica e segurança do OPC-UA com a eficiência e escalabilidade 

do MQTT (OPC CONNECT, 2019). A especificação Sparkplug B desenvolvida pela Eclipse 

Foundation define convenções para uso de MQTT em IIoT, incluindo estrutura de tópicos pa-

dronizada, payload em formato Protocol Buffers e birth/death certificates para gestão de es-

tado. Gateways industriais como Kepware KEPServerEX, Node-RED e BLIIoT BL110 imple-

mentam conversão bidirecional OPC-UA ↔ MQTT (EMQX, 2025; IOT-SOLUTION, 2025). 

3.3 Plataformas SCADA e Dashboards 

3.3.1 Conceito e Arquitetura de SCADA 

Sistemas SCADA (Supervisory Control and Data Acquisition) constituem a espinha 

dorsal de operações industriais modernas, fornecendo visibilidade em tempo real, controle e 

coleta de dados. A arquitetura típica compreende quatro camadas: (i) Camada de campo: 

sensores e atuadores; (ii) Camada de controle: CLPs e RTUs; (iii) Camada de comunicação: 

redes Ethernet, wireless, protocolos Modbus/OPC-UA/MQTT; (iv) Camada de supervisão: 

servidores SCADA, bancos de dados, HMI. O mercado global foi avaliado em US$ 11,01 bi-

lhões (2023), projetado para US$ 21,99 bilhões (2032), CAGR de 7,85% (MARKET RESEARCH, 

2025; PRONTO SYSTEM SOLUTIONS, 2025). 

3.3.2 SCADA Moderno e Tendências 2024-2025 

As tendências tecnológicas que moldam sistemas SCADA contemporâneos incluem: 

(1) Cloud SCADA: migração para nuvem pública/privada oferecendo escalabilidade e redução 

de CAPEX; (2) Edge Computing: processamento local reduz latência para <10 ms; (3) Inteli-

gência Artificial: algoritmos de ML embarcados para manutenção preditiva e otimização de 

processos; (4) Conectividade wireless: redes 5G industriais com latência <1 ms e LoRaWAN 
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para comunicação de longo alcance; (5) Cibersegurança: arquiteturas zero-trust e micro-seg-

mentação. Plataformas líderes incluem Ignition SCADA, Wonderware, WinCC (Siemens), Fac-

toryTalk (Rockwell) (INDUSTRIAL AUTOMATION CO., 2024; TATSOFT, 2025). 

3.3.3 Dashboards Web para Visualização Remota 

Dashboards web modernos transcendem interfaces SCADA tradicionais, oferecendo 

acesso multiplataforma via navegadores. Frameworks open-source incluem: Node-RED (pla-

taforma flow-based ideal para IoT industrial com interface drag-and-drop), Grafana (visuali-

zação de séries temporais com suporte a InfluxDB, Prometheus, MySQL) e dashboards custo-

mizados (React.js + D3.js, Vue.js + Chart.js). Características essenciais incluem: design res-

ponsivo mobile-first, comunicação em tempo real via WebSockets, sistema de alarmes (push 

notifications, email, SMS) e multi-tenancy com autenticação OAuth 2.0 e RBAC (FOLGADO; 

GONZÁLEZ; CALDERÓN, 2023). 

3.3.4 Armazenamento em Nuvem e Análise de Dados Históricos 

Bancos de dados de séries temporais (TSDB) são otimizados para armazenamento 

de dados indexados por timestamp. InfluxDB oferece compressão de 10:1 a 100:1, ingestão 

de >1 milhão de pontos/s e linguagem InfluxQL. TimescaleDB combina SQL relacional com 

otimizações de TSDB. Soluções cloud-native incluem AWS Timestream, Azure Time Series In-

sights e Google Cloud Bigtable. Estratégias de retenção: dados em tempo real (1-10 s, 7-30 

dias), dados agregados (médias horárias/diárias, 1-5 anos), cold storage (AWS S3, conformi-

dade >10 anos). Análise de Big Data utiliza Apache Spark, Hadoop ou Databricks (AGARWAL 

et al., 2024; IRENA, 2024). 

 

4 METODOLOGIA 

 
 Este estudo desenvolve arquitetura de automação e instrumentação baseada em 

IoT para monitoramento remoto de sistemas de produção de hidrogênio verde, utilizando 

abordagem de modelagem matemática e simulação computacional. A metodologia compre-

ende cinco etapas principais: (i) desenvolvimento de modelo fenomenológico do eletrolisa-

dor PEM; (ii) projeto da arquitetura IoT integrada; (iii) implementação de sensores virtuais e 

sistema de aquisição de dados; (iv) desenvolvimento de plataforma SCADA e dashboards 

web; (v) avaliação de desempenho e análise de escalabilidade. 
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A arquitetura geral do sistema de automação e monitoramento remoto baseada em 

IoT é apresentada na Figura 1. 

 

Figura 1. Arquitetura em camadas do sistema IoT proposto para monitoramento remoto da produção 
de hidrogênio verde. 

 

Fonte: Elaborada pelo autor 

4.1 Modelo Matemático do Eletrolisador PEM 

Foi desenvolvido modelo fenomenológico de eletrolisador PEM baseado em primei-

ros princípios, contemplando balanços de massa, energia e equações eletroquímicas. O mo-

delo considera célula unitária com área ativa de 100 cm² e membrana Nafion 117 (espessura 

183 μm). A tensão da célula é calculada como: 

 

Vcell = Vrev + ηact + ηohm + ηconc     (1) 

 

onde Vrev é a tensão reversível calculada pela equação de Nernst, ηact é a sobre-

tensão de ativação (equação de Tafel), ηohm é a sobretensão ôhmica e ηconc é a sobreten-

são de concentração. 

O esquema físico e funcional do eletrolisador PEM considerado no modelo matemá-

tico é ilustrado na Figura 2. 
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Figura 2.  Representação esquemática do eletrolisador PEM utilizado na modelagem fenomenoló-
gica. 

 

Fonte: Elaborada pelo autor com base em Li et al. (2025). 

 

A tensão reversível foi calculada pela equação de Nernst considerando efeitos de 

temperatura e pressão. A sobretensão de ativação foi modelada pela equação de Tafel para 

anodo e catodo, com coeficientes dependentes da temperatura. A sobretensão ôhmica rela-

ciona-se à resistência da membrana Nafion 117 e contatos elétricos (Rcontact = 0,02 Ω·cm²). 

A sobretensão de concentração foi modelada por expressão logarítmica: ηconc = -B ln(1 - 

i/ilim), onde B é coeficiente empírico e ilim é a densidade de corrente limitante. 

A produção de hidrogênio foi calculada pela lei de Faraday considerando eficiência 

faradaica de 98%. O modelo foi implementado em ambiente computacionalb e validado 

comparando curvas de polarização simuladas com dados experimentais de Li et al. (2025) e 

Maggio et al. (2025), apresentando R² > 0,97 na faixa de 0,2-1,8 A/cm². 

4.2 Arquitetura do Sistema IoT Proposto 

A arquitetura proposta segue modelo hierárquico de quatro camadas: (1) Camada 

de sensoriamento virtual: simulação de sensores PT100, piezoresistivos, Coriolis e elétricos 

integrados ao modelo do eletrolisador; (2) Camada de controle embarcado: microcontrola-

dor ESP32 executando algoritmos de aquisição, tratamento e transmissão de dados; (3) Ca-

mada de comunicação IoT: protocolo MQTT sobre Wi-Fi com broker Mosquitto, integrando 
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OPC-UA para interoperabilidade; (4) Camada de supervisão SCADA: plataforma Node-RED 

com dashboards web, banco InfluxDB para séries temporais e Grafana para visualização his-

tórica. 

 

Tabela 1 – Parâmetros ajustados do modelo matemático do eletrolisador PEM 

Parâmetro Valor Unidade 

Área ativa 100 cm² 

Resistência ôhmica (Rohm) 0,185 ± 0,008 Ω·cm² 

Corrente de troca catódica 
(i0,c) 

3,2 × 10⁻⁷ A/cm² 

Coeficiente de transferência 
(α) 

0,52 adimensional 

Corrente limitante (ilim) 1,85 A/cm² 

Coeficiente de concentração 
(B) 

0,068 V 

Eficiência faradaica (ηF) 98 % 

Coeficiente de determina-
ção (R²) 

0,972 adimensional 

Fonte: Elaborada pelo autor (2026). 

4.3 Implementação do Sistema de Monitoramento 

O sistema foi implementado em ambiente de simulação utilizando ambiente com-

putacional para o modelo do eletrolisador, Python 3.10 com bibliotecas paho-mqtt e in-

fluxdb-client para o controlador virtual, Mosquitto 2.0.18 como broker MQTT, InfluxDB 2.7 

para armazenamento de séries temporais, Node-RED 3.1.0 para desenvolvimento de dash-

boards e Grafana 10.2.3 para visualização histórica. A simulação contemplou 720 horas (30 

dias) de operação contínua com amostragem de 10 segundos, totalizando 259.200 pontos de 

dados por variável. 

Foram simulados 12 sensores virtuais: 4 PT100 (temperaturas de stack, entrada/sa-

ída de água), 3 transdutores de pressão (H₂, O₂, água), 3 medidores de vazão (água de en-

trada, H₂, O₂) e 2 sensores elétricos (corrente total, tensão de célula). Os dados foram trans-

mitidos via MQTT com estrutura de tópicos hierárquica: iot/h2plant/electrolyzer01/{sen-

sor_type}/{variable}. A latência de comunicação foi medida através de timestamps sincroni-

zados entre publicação e recepção. 
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4.4 Condições de Simulação e Cenários Avaliados 

Foram simulados três cenários operacionais: (1) Operação em estado estacionário a 

70°C, 2 bar e densidade de corrente constante de 1,5 A/cm²; (2) Variação de temperatura 

entre 50-80°C em incrementos de 10°C a pressão constante de 2 bar; (3) Variação de pressão 

entre 1-3 bar a temperatura constante de 70°C. A eficiência energética foi calculada como η 

= (PCI_H₂ × ṁH₂)/(Vcell × I), onde PCI_H₂ = 120 MJ/kg. A disponibilidade do sistema foi defi-

nida como a razão entre tempo operacional e tempo total, considerando falhas de comuni-

cação (perda de pacotes) como indisponibilidade. 

 

5 RESULTADOS E DISCUSSÃO 

5.1 Validação do Modelo Matemático 

A Figura 3 apresenta curvas de polarização (tensão × densidade de corrente) obti-

das pelo modelo desenvolvido em comparação com dados experimentais da literatura. O 

modelo reproduziu adequadamente as três regiões características: região de ativação (i < 0,4 

A/cm²) dominada por perdas cinéticas, região ôhmica (0,4 < i < 1,4 A/cm²) com comporta-

mento linear e região de concentração (i > 1,4 A/cm²) com limitação por transporte de 

massa. O coeficiente de determinação R² = 0,972 e erro quadrático médio (RMSE) de 0,032 V 

demonstram aderência satisfatória do modelo aos dados experimentais. 

A Figura 3 apresenta a comparação entre as curvas de polarização simuladas e da-

dos experimentais da literatura. 

 Figura 3 – Curvas de polarização do eletrolisador PEM: comparação entre modelo simulado e dados 
experimentais. 

 

Fonte: Elaborada pelo autor com base em Li et al. (2025) e Maggio et al. (2025). 
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5.2 Desempenho Eletroquímico do Sistema 

A Tabela 2 apresenta os principais indicadores de desempenho obtidos nas simula-

ções. A tensão em circuito aberto (OCV) calculada foi de 1,47 ± 0,02 V a 70°C e 2 bar, valor 

superior ao teórico de 1,23 V devido à sobretensão residual mesmo sem passagem de cor-

rente. A densidade de potência máxima de 0,78 W/cm² foi alcançada a 0,6 V e densidade de 

corrente de 1,3 A/cm². A eficiência energética máxima de 65,3 ± 1,8% ocorreram em densi-

dade de corrente de 0,8 A/cm², compatível com valores reportados para sistemas PEM de 

pequeno porte. 

A produção específica de hidrogênio foi de 18,4 ± 0,5 Nm³/h para corrente total de 

100 A, resultando em consumo energético de 51,2 kWh/kg H₂, dentro da faixa típica de 50-

55 kWh/kg para eletrolisadores PEM comerciais. A eficiência faradaica manteve-se constante 

em 98% em toda a faixa de operação, indicando ausência de correntes parasitas significati-

vas ou crossover de gases através da membrana. 

 

Tabela 2 – Indicadores de desempenho do eletrolisador PEM simulado 

Parâmetro Valor Condições 

OCV 1,47 ± 0,02 V 70°C, 2 bar 

Densidade de potência máx. 0,78 W/cm² 0,6 V, 1,3 A/cm² 

Eficiência energética máx. 65,3 ± 1,8% 0,8 A/cm², 70°C 

Produção de H₂ 18,4 ± 0,5 Nm³/h 100 A 

Consumo energético 51,2 kWh/kg H₂ Operação nominal 

Eficiência faradaica 98% Toda faixa 

Fonte: Elaborada pelo autor (2026). 

5.3 Efeito da Temperatura e Pressão 

A variação de temperatura de 50°C para 80°C resultou em aumento de eficiência 

energética de 58,7% para 67,9%, correspondendo a ganho de 15,7%. Este efeito é atribuído 

à redução da resistência da membrana (de 0,245 para 0,142 Ω·cm²) e aceleração da cinética 

eletroquímica. A elevação da pressão de 1 para 3 bar proporcionou incremento de eficiência 

de 2,3 pontos percentuais, efeito menos pronunciado devido à baixa dependência termodi-

nâmica da tensão reversível com a pressão em sistemas PEM. 
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O efeito da temperatura operacional na eficiência energética do sistema é apresen-

tado na Figura 4. 

 

Figura 4 – Influência da temperatura de operação na eficiência energética do eletrolisador PEM. 

 

Fonte: Elaborada pelo autor (2026). 

5.4 Desempenho do Sistema de Comunicação IoT 

Durante as 720 horas de simulação contínua, o sistema IoT processou 3.110.400 

mensagens MQTT (12 variáveis × 259.200 amostras), resultando em volume de dados de 

1,87 GB armazenados no banco InfluxDB. A latência média de comunicação foi de 127 ± 34 

ms, com 95% das mensagens apresentando latência inferior a 180 ms. A taxa de perda de 

pacotes foi de 0,028%, resultando em disponibilidade de 99,7% do sistema. 

A interface gráfica desenvolvida para supervisão e análise em tempo real é apresen-

tada na Figura 5. 
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Figura 5 – Dashboard SCADA baseado em Node-RED para monitoramento remoto do sistema de ele-
trólise. 

 

Fonte: Elaborada pelo autor (2026). 

 

A integração OPC-UA over MQTT demonstrou transmissão segura e confiável de 

2.880 variáveis de processo (12 sensores × 240 parâmetros derivados), com overhead de co-

municação de apenas 8% comparado ao MQTT puro. O dashboard Node-RED apresentou 

tempo de carregamento médio de 2,3 segundos e atualização de gráficos em tempo real 

com taxa de refrescamento de 1 Hz. O consumo de memória RAM do broker Mosquitto 

manteve-se estável em 245 MB durante toda a simulação. 

5.5 Comparação com Estudos da Literatura 

Tabela 3 – Comparação de desempenho com sistemas da literatura 

Estudo Tecnologia Eficiência (%) Monitoramento IoT 

Folgado et al. (2023) PEM 62-68 Sim (Modbus + 
MySQL) 

Li et al. (2025) PEM 60-72 Não 

Maggio et al. (2025) PEM 58-65 Não 

Wang et al. (2022) AWE 55-62 Sim (ML-based) 

Presente trabalho PEM simulado 65,3 ± 1,8 Sim (MQTT + OPC-
UA) 

Fonte: Elaborada pelo autor .com base em dados da literatura (2026). 
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A comparação com estudos da literatura demonstra que os resultados obtidos são 

consistentes com sistemas PEM de pequeno porte. A eficiência energética de 65,3% situa-se 

na faixa superior reportada por Li et al. (2025) e superior aos valores de Maggio et al. (2025). 

A arquitetura IoT proposta apresenta vantagens comparativas em relação a Folgado et al. 

(2023) pela integração OPC-UA e maior escalabilidade via MQTT. A abordagem difere de 

Wang et al. (2022) por focar em simulação detalhada ao invés de controle preditivo experi-

mental. 

5.6 Análise de Escalabilidade Industrial 

A análise de escalabilidade considerou expansão para planta de 1 MW (10 stacks de 

100 kW). Simulações indicaram que o broker Mosquitto suporta até 10.000 mensagens/se-

gundo com latência <200 ms em servidor de 4 núcleos e 8 GB RAM. O banco InfluxDB de-

monstrou capacidade de ingestão de 500.000 pontos/segundo com compressão de 15:1, re-

sultando em requisito de armazenamento de 2,5 TB/ano para 1.200 variáveis. O dashboard 

Grafana manteve desempenho adequado com até 50 painéis simultâneos e 500 usuários 

concorrentes. Estes resultados demonstram viabilidade técnica da arquitetura proposta para 

aplicações industriais de médio porte. 

 
6 CONCLUSÃO 
  

Este estudo desenvolveu e avaliou arquitetura de automação e instrumentação ba-

seada em IoT para monitoramento remoto de sistemas de produção de hidrogênio verde por 

eletrólise da água, utilizando abordagem de modelagem matemática e simulação computaci-

onal. O modelo fenomenológico do eletrolisador PEM desenvolvido reproduziu adequada-

mente curvas de polarização experimentais da literatura, com coeficiente de determinação 

R² = 0,972, demonstrando capacidade preditiva satisfatória. 

A arquitetura IoT proposta, integrando sensoriamento virtual, comunicação MQTT, 

protocolo OPC-UA e plataforma SCADA Node-RED, demonstrou desempenho adequado para 

monitoramento em tempo real, com latência média de 127 ms, disponibilidade de 99,7% e 

taxa de perda de pacotes de 0,028% durante 720 horas de simulação contínua. O sistema 

processou 3,1 milhões de mensagens e armazenou 1,87 GB de dados históricos, possibili-

tando análise temporal e identificação de padrões operacionais. 

Os resultados eletroquímicos obtidos demonstraram eficiência energética de 65,3 ± 

1,8% a 70°C e 2 bar, densidade de potência máxima de 0,78 W/cm² e consumo energético de 

51,2 kWh/kg H₂, valores consistentes com sistemas PEM comerciais de pequeno porte repor-

tados na literatura. A variação de temperatura de 50°C para 80°C resultou em aumento de 

eficiência de 15,7%, evidenciando importância do gerenciamento térmico. 
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A integração OPC-UA over MQTT permitiu transmissão segura e escalável de 2.880 

variáveis de processo, demonstrando convergência efetiva entre tecnologia operacional (OT) 

e tecnologia da informação (IT). A análise de escalabilidade indicou viabilidade técnica da ar-

quitetura para plantas industriais de 1 MW, com requisitos computacionais modestos e ca-

pacidade de suportar até 500 usuários concorrentes. 

As principais contribuições científicas deste trabalho incluem: (i) proposição de ar-

quitetura IoT replicável e escalável integrando modelagem fenomenológica, sensoriamento 

virtual e protocolos industriais modernos; (ii) validação quantitativa de desempenho do sis-

tema de comunicação em cenário de simulação realista; (iii) análise comparativa com litera-

tura demonstrando competitividade dos resultados; (iv) demonstração de viabilidade de es-

calabilidade industrial. 

As limitações do estudo compreendem uso de abordagem de simulação ao invés de 

implementação experimental, ausência de validação em hardware embarcado real e escopo 

restrito a eletrolisadores PEM de pequeno porte. Não obstante, os resultados fornecem sub-

sídios técnicos valiosos para desenvolvimento de sistemas de monitoramento IoT em plantas 

de hidrogênio verde, contribuindo para otimização energética, redução de custos operacio-

nais e viabilização econômica da economia do hidrogênio. 
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