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RESUMO

A transicdo energética global para descarbonizacdo tem posicionado o hidrogénio verde como vetor
estratégico para alcangar emissdes liquidas zero. Este estudo desenvolve e avalia uma arquitetura de
automacao e instrumentagdo baseada em Internet das Coisas (IoT) para monitoramento remoto de
sistemas de produgdo de hidrogénio verde por eletrolise da agua. Foi implementado um sistema inte-
grado contemplando camadas de sensoriamento inteligente, controle por microcontrolador ESP32, co-
municagao via protocolo MQTT e supervisdo através de plataforma SCADA web. O modelo matematico
do eletrolisador PEM foi desenvolvido e validado, simulando operagao sob diferentes condigdes de tem-
peratura (50-80°C), pressao (1-3 bar) e densidade de corrente (0,2-1,8 A/cm2). Sensores virtuais de
temperatura (PT100), pressao (piezoresistivos), vazao (Coriolis) e parametros elétricos foram integra-
dos ao sistema. Os resultados demonstraram eficiéncia energética de 65,3 = 1,8% a 70°C e 2 bar, com
densidade de poténcia de 0,78 W/cm2 a 0,6 V. O sistema IoT apresentou laténcia média de 127 ms e
disponibilidade de 99,7% durante 720 horas de simulagdo continua. A integragdo OPC-UA over MQTT
permitiu transmiss3ao segura de 2.880 variaveis de processo com taxa de perda de pacotes inferior a
0,03%. O dashboard SCADA desenvolvido em Node-RED possibilitou visualizagdgo em tempo real e ana-
lise histérica com armazenamento em banco InfluxDB. Os achados demonstram viabilidade técnica da
arquitetura proposta para escalabilidade industrial, contribuindo para otimizacao energética e reducao
de custos operacionais em plantas de hidrogénio verde.
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AUTOMATION AND IOT-BASED INSTRUMENTATION FOR REMOTE MO-
NITORING OF GREEN HYDROGEN PRODUCTION SYSTEMS

ABSTRACT

The global energy transition towards decarbonization has positioned green hydrogen as a strategic
vector to achieve net-zero emissions. This study develops and evaluates an automation and instrumen-
tation architecture based on Internet of Things (IoT) for remote monitoring of green hydrogen produc-
tion systems via water electrolysis. An integrated system was implemented comprising intelligent sen-
sing layers, ESP32 microcontroller control, MQTT protocol communication, and supervision through a
web SCADA platform. The PEM electrolyzer mathematical model was developed and validated, simula-
ting operation under different temperature conditions (50-80°C), pressure (1-3 bar), and current density
(0.2-1.8 A/cm?). Virtual sensors for temperature (PT100), pressure (piezoresistive), flow (Coriolis), and
electrical parameters were integrated into the system. Results demonstrated energy efficiency of 65.3
+ 1.8% at 70°C and 2 bar, with power density of 0.78 W/cm2 at 0.6 V. The IoT system presented
average latency of 127 ms and availability of 99.7% during 720 hours of continuous simulation. OPC-
UA over MQTT integration enabled secure transmission of 2,880 process variables with packet loss rate
below 0.03%. The SCADA dashboard developed in Node-RED enabled real-time visualization and histo-
rical analysis with InfluxDB storage. Findings demonstrate technical feasibility of the proposed architec-
ture for industrial scalability, contributing to energy optimization and operational cost reduction in green
hydrogen plants.

Keywords
Green hydrogen. Internet of Things. PEM electrolysis. Industrial automation. SCADA. Industry 4.0.



1 INTRODUCAO

A transicdo energética global rumo a descarbonizacdo profunda tem posicionado o
hidrogénio verde como vetor estratégico para alcancar as metas de emissdes liquidas zero do
Acordo de Paris. Proje¢Ges indicam que a demanda por hidrogénio como portador de energia
ultrapassara 350 milhGes de toneladas anuais até 2050, impulsionada pela necessidade de
distribuicdo e armazenamento sustentaveis de energia renovavel (VEDRTNAM; KALAUNI;
PAHWA, 2025). Nesse contexto, a producdo de hidrogénio verde por eletrdlise da dgua utili-
zando eletricidade renovavel emerge como rota tecnoldgica prioritaria para setores como
transporte pesado, indUstria quimica e geracdo de energia.

Contudo, a producdo de hidrogénio verde enfrenta desafios substanciais relaciona-
dos a eficiéncia de custos, conformidade operacional, monitoramento continuo e seguranga
(AGARWAL et al., 2024). Com a eletricidade representando aproximadamente 70% dos custos
totais de producdo (IRENA, 2024), torna-se imperativa a operacao baseada em dados para
otimizacdo de recursos. Sistemas de eletrélise demandam controle preciso sobre parametros
criticos como temperatura, pressao, vazao e variaveis elétricas, cujas flutuacdes podem resul-
tar em ineficiéncias operacionais ou danos aos equipamentos (ZAINAL; KER; MOHAMED,
2024).

A digitalizagao industrial através de tecnologias da Industria 4.0 oferece caminhos
promissores para superar esses desafios. A integracado de Internet das Coisas (loT), inteligéncia
artificial (IA), aprendizado de maquina (ML) e gémeos digitais em plantas de hidrogénio pos-
sibilita otimizacdo de processos, monitoramento em tempo real, analise preditiva e escalabi-
lidade (FOLGADO; GONZALEZ; CALDERON, 2023). A loT, que interconecta bilhdes de sensores
e dispositivos via Internet, viabiliza automacao na coleta de dados, andlise, tomada de decisdo
e processos de atuacdao (AGARWAL et al., 2024).

Os Sistemas de Supervisdo e Aquisicdo de Dados (SCADA) constituem a espinha dorsal
das operacgdes industriais modernas, fornecendo visibilidade em tempo real, controle e coleta
de dados em ambientes complexos (PRONTO SYSTEM SOLUTIONS, 2025). O mercado global
de SCADA, avaliado em USS 11,01 bilhdes em 2023, estad projetado para atingir USS 21,99
bilhdes até 2032, com CAGR de 7,85% (MARKET RESEARCH, 2025). A convergéncia entre loT e
SCADA representa evolugdo significativa na automacao industrial, incorporando computacao
em nuvem, computacdo de borda e tecnologias sem fio para maior flexibilidade e escalabili-
dade (INDUSTRIAL AUTOMATION CO., 2024).

Estudos recentes demonstram a aplicabilidade de arquiteturas loT compativeis com
a Industria 4.0 para hidrogénio verde. Folgado, Gonzalez e Calderdén (2023) desenvolveram
sistema lloT para geradores de hidrogénio PEM, integrando arrays fotovoltaicos, eletrolisado-
res e armazenamento através de plataformas SCADA baseadas em Node-RED e protocolos
Modbus. Wang et al. (2022) implementaram controle preditivo baseado em ML para otimiza-
¢do de eficiéncia energética, alcangcando reducdo de 12,5% no consumo especifico de energia.



Apesar desses avangos, lacunas significativas persistem na literatura. A maioria dos
sistemas de producdo de hidrogénio verde ainda utiliza arquiteturas de controle locais com
conectividade limitada, dificultando o monitoramento remoto, analise histdrica e tomada de
decisdo em tempo real baseada em multiplas varidveis do processo (VEDRTNAM; KALAUNI;
PAHWA, 2025). Adicionalmente, ha caréncia de estudos que integrem holisticamente senso-
riamento inteligente, protocolos de comunicagao industrial, plataformas SCADA modernas e
modelagem matematica detalhada para simulagao e otimizagao de sistemas de eletrélise.

Diante disso, o objetivo geral deste trabalho é desenvolver e avaliar uma arquitetura
de automacdo e instrumentacdo baseada em loT para monitoramento remoto de sistemas de
producao de hidrogénio verde por eletrdlise da dgua, utilizando modelagem matematica e
simulacdao computacional.

A contribuicdo cientifica deste estudo reside na proposicdo de arquitetura replicavel
e escalavel que integra tecnologias consolidadas de automacdao industrial com paradigmas
emergentes de loT e Industria 4.0, aplicadas especificamente a producdo de hidrogénio verde
através de modelagem e simulagdo. Os resultados fornecerdo subsidios técnicos para otimi-
zacdo de eficiéncia energética, aumento de seguranga operacional e reducdo de custos ope-
racionais em plantas de eletrélise, contribuindo para a viabilizacdo econ6mica da economia
do hidrogénio verde.

2 PRODUCAO DE HIDROGENIO VERDE POR ELETROLISE

2.1 Principios da Eletrdlise da Agua

A eletrélise da dgua consiste na decomposicdo de moléculas de H,O em hidrogénio
e oxigénio através da aplicacao de corrente elétrica. As reacdes eletroquimicas ocorrem em
dois eletrodos: no catodo, a reagdo de evolugao de hidrogénio (HER, do inglés Hydrogen
Evolution Reaction) processa-se segundo 2H,0 + 2e™ - H, + 20H~; no anodo, a reagdo de
evolucdo de oxigénio (OER, do inglés Oxygen Evolution Reaction) segue 40H™ = O, + 2H,0 +
4e” (Ll et al., 2025). A tensdo tedrica minima para decomposi¢ao da agua em condigbes pa-
drdo (25°C, 1 atm) é 1,23 V, derivada da energia livre de Gibbs da reacao global. Entretanto,
devido a irreversibilidades termodinamicas e cinéticas, a tensdo operacional tipica situa-se
entre 1,8-2,2 V, resultando em consumo energético de 39-50 kWh/kg H, dependendo da efi-
ciéncia do sistema (60-80%) (VEDRTNAM; KALAUNI; PAHWA, 2025).

As varidveis criticas que influenciam o desempenho da eletrélise incluem tempera-
tura, pressao e densidade de corrente. O aumento da temperatura reduz a sobretensdo de
ativacdo através da aceleracdo da cinética das reacdes eletroquimicas, melhorando a condu-
tividade i6nica do eletrdlito. A elevacdo da pressao operacional favorece o armazenamento
direto do hidrogénio produzido, reduzindo custos de compressdo subsequente.



A densidade de corrente determina a taxa de producdo de hidrogénio, porém valo-
res excessivos intensificam perdas 6hmicas e de transporte de massa (LI et al., 2025).

2.2 Tipos de Eletrolisadores

Os eletrolisadores classificam-se em trés categorias principais conforme a tecnolo-
gia de eletrolito empregada. Os eletrolisadores alcalinos (AWE, do inglés Alkaline Water Elec-
trolysis) utilizam solucdo aquosa de hidréxido de potdssio (KOH) 30-40% como eletrélito,
operando tipicamente a 60-80°C e pressdes de 1-30 bar. Constituem a tecnologia mais ma-
dura comercialmente, com eficiéncia de 60-70% e vida util superior a 60.000 horas. As prin-
cipais vantagens incluem baixo custo de catalisadores (niquel) e longa durabilidade; as des-
vantagens compreendem menor densidade de corrente (0,2-0,4 A/cm?) e necessidade de
gestdo de eletrélito corrosivo (ZAINAL; KER; MOHAMED, 2024).

Os eletrolisadores de membrana de troca protonica (PEM, do inglés Proton Ex-
change Membrane) empregam membrana polimérica (tipicamente Nafion) como eletrdlito
sélido, permitindo operacdo a 50-80°C e densidades de corrente elevadas (1-3 A/cm?). A efi-
ciéncia situa-se em 65-75%, com vida util de 40.000-80.000 horas. Vantagens incluem res-
posta dinamica rdpida (adequada para integracdo com fontes renovaveis intermitentes), ele-
vada pureza do hidrogénio (>99,99%) e design compacto. Desvantagens abrangem custos
elevados devido ao uso de catalisadores de metais nobres (platina, iridio) e membranas es-
pecializadas (KIM et al., 2025).

Os eletrolisadores de membrana de troca anidnica (AEM, do inglés Anion Exchange
Membrane) representam tecnologia hibrida emergente que combina vantagens dos siste-
mas AWE e PEM. Utilizam membrana de troca aniénica em meio alcalino com concentrac¢ées
reduzidas de KOH (1-4%), possibilitando o uso de catalisadores ndo-nobres (niquel, cobalto)
similares aos AWE, mantendo densidades de corrente comparaveis aos PEM. A tecnologia
encontra-se em estagio de desenvolvimento, com pesquisas focadas na melhoria da estabili-
dade quimica das membranas e reducdo de custos (ZAINAL; KER; MOHAMED, 2024).

2.3 Varidveis de Processo Relevantes para Monitoramento

2.3.1 Temperatura do Stack

A temperatura do stack de eletrdlise constitui parametro critico que influencia mul-
tiplos aspectos do desempenho do sistema. A faixa operacional varia conforme a tecnologia:
AWE opera tipicamente entre 60-90°C, PEM entre 50-80°C e eletrolisadores de éxido sdlido
(SOEC) entre 700-900°C (VEDRTNAM et al., 2025).



O aumento da temperatura reduz a sobretensio de ativacdo através da aceleracao
da cinética das reacdes eletroquimicas, descrita pela equagdo de Arrhenius. Simultanea-
mente, melhora a condutividade i6nica do eletrdlito, reduzindo perdas 6hmicas. Em siste-
mas PEM, a temperatura influencia diretamente a condutividade protonica da membrana
Nafion, que apresenta maximo desempenho na faixa de 60-80°C com adequada hidratagao.

O gerenciamento térmico inadequado pode resultar em degradacdo acelerada dos
componentes. Temperaturas excessivas causam desidratacdo da membrana em sistemas
PEM, aumentando a resisténcia interna e formacao de hot spots que deterioram o conjunto
membrana-eletrodos (MEA). Temperaturas insuficientes reduzem a eficiéncia de conversao
e podem causar condensacao de agua nos canais de distribuicdao de gases. Sensores de tem-
peratura do tipo PT100 ou PT1000 (RTD de platina) sdo amplamente empregados devido a
precisdo de +0,15°C e estabilidade em longo prazo (VEDRTNAM et al., 2025).

2.3.2 Pressdo de Hidrogénio e Oxigénio

A pressao dos gases produzidos constitui varidavel fundamental para seguranca e efi-
ciéncia energética global do sistema. Eletrolisadores modernos operam em pressdes de 1-30
bar, com sistemas avancados atingindo até 70 bar para reducdo de custos de compressao
posterior (ENERGY.GOV, 2024). A elevacdo da pressdo operacional apresenta vantagens ter-
modinamicas: segundo a equacao de Nernst, o aumento da pressao parcial dos produtos re-
duz a tensdo reversivel da célula em aproximadamente 15 mV por aumento de pressao de 1
para 30 bar. Adicionalmente, o armazenamento direto do hidrogénio em alta pressao eli-
mina etapas de compressao mecanica, que consomem 10-15% da energia do hidrogénio pro-
duzido.

Aspectos de segurangca demandam monitoramento rigoroso da pressao devido as
propriedades do hidrogénio. O H, forma misturas explosivas com ar na faixa de 4-75% em
volume, com energia minima de ignicdo extremamente baixa (0,017 mlJ). Sensores de pres-
sdo piezoresistivos baseados em strain gauges de silicio oferecem precisdao de +0,1% da
faixa, resposta rapida (<1 ms) e compatibilidade com ambientes explosivos (certificacdo
ATEX/IECEx). O mercado de sensores de pressdo para aplicages de hidrogénio foi avaliado
em USD 150 milhdes em 2024, com projecao de USD 300 milhdes até 2033, refletindo cresci-
mento de 8,5% CAGR (VERIFIED MARKET REPORTS, 2025).

2.3.3 Vazdo de Agua e Gases

O controle estequiométrico da vazao de agua alimentada ao eletrolisador e das va-
z0es de hidrogénio e oxigénio produzidos é essencial para operacao eficiente e segura.



A relacdo estequiométrica ideal é de 9 kg de agua para produzir 1 kg de hidrogénio.
Sensores de vazao massica por efeito Coriolis oferecem precisdo de +0,1% do valor medido
com repetibilidade de +0,05%, permitindo balancos de massa precisos e deteccdo de vaza-
mentos. A qualidade da dgua de alimentagao deve atender especificagdes rigorosas: conduti-
vidade < 10 uS/cm, concentragdo de ions < 5 ppb para prevenir envenenamento dos catalisa-
dores (ENERGY.GOV, 2024).

2.3.4 Corrente, Tensdo e Poténcia Elétrica

As varidveis elétricas constituem os principais indicadores de desempenho do ele-
trolisador. A densidade de corrente, definida como corrente por unidade de area ativa do
eletrodo (A/cm?), determina diretamente a taxa de producdo de hidrogénio segundo a lei de
Faraday: mH, = (I x M)/(n x F), onde | é a corrente total, M a massa molar do H; (2,016
g/mol), n o nimero de elétrons transferidos (2) e F a constante de Faraday (96.485 C/mol).
Sistemas PEM modernos operam tipicamente na faixa de 1-2 A/cm? (LI et al., 2025).

A eficiéncia faradaica, definida como a razdo entre a quantidade de hidrogénio efe-
tivamente produzida e a quantidade tedrica calculada pela lei de Faraday, deve exceder 95%
em sistemas bem projetados. A eficiéncia energética global relaciona a energia contida no
hidrogénio produzido (com base no PCl de 120 MJ/kg ou 33,3 kWh/kg) com a energia elé-
trica consumida, situando-se tipicamente entre 60-75% para sistemas PEM (KIM et al.,
2025).

3 AUTOMACAO, INSTRUMENTAGAO E IOT EM SISTEMAS ENERGETICOS

Sensores inteligentes, protocolos de comunicacao industrial e plataformas SCADA
constituem elementos fundamentais da arquitetura loT aplicada a sistemas de producdo de
hidrogénio verde. Este capitulo apresenta as tecnologias habilitadoras que permitem moni-
toramento em tempo real, controle distribuido e andlise avancada de dados.

3.1 Sensores Inteligentes Aplicados a Produgdo de Hidrogénio

Sensores inteligentes diferem-se de sensores convencionais pela capacidade de pro-
cessamento local de dados, comunicacdo digital e autodiagndstico. O mercado global de sen-
sores para aplicagdes de hidrogénio foi avaliado em USD 374,6 milhdes em 2024, com proje-
¢do de USD 716,5 milhGes até 2034, refletindo CAGR de 6,7% (BUSINESS RESEARCH IN-
SIGHTS, 2024).



3.1.1 Sensores de Temperatura

Detectores de temperatura por resisténcia (RTD) baseados em platina, designados
PT100 e PT1000, constituem o padrao industrial para medicao de temperatura em sistemas
de eletrélise. O principio de operagao baseia-se na varia¢cao da resisténcia elétrica da platina
com a temperatura, descrita por R(T) = Ro[1 + a(T - To)], onde Ro = 100 Q (PT100) ou 1000 Q
(PT1000) a 0°C e a = 0,00385 Q/Q/°C. A faixa operacional estende-se de -200°C a +850°C,
com precisao de +0,15°C. Termopares tipo K (Cromel-Alumel) oferecem alternativa de me-
nor custo com faixa de -200°C a +1200°C e resposta rapida (<1 s), baseados no efeito See-
beck (ARCHIVE MARKET RESEARCH, 2024).

3.2 Comunicac¢do Industrial e loT

3.2.1 Protocolos Industriais Cldssicos

Modbus constitui o protocolo industrial mais difundido globalmente desde sua cria-
¢do em 1979. Opera em arquitetura mestre-escravo, onde um dispositivo mestre solicita da-
dos de dispositivos escravos. Duas variantes sao amplamente empregadas: Modbus RTU
transmite dados em formato binario através de interface serial RS485/RS232, oferecendo ro-
bustez em ambientes industriais ruidosos; Modbus TCP encapsula frames Modbus em paco-
tes TCP/IP, permitindo integracdo com redes Ethernet. Vantagens incluem simplicidade de
implementacdo e ampla compatibilidade. Limitacdes abrangem auséncia de seguranca na-
tiva e arquitetura de polling que pode gerar trafego excessivo (ROBUSTEL, 2025; EMQ,
2025).

OPC-UA (Unified Architecture) representa evolucdo do protocolo OPC cldssico, de-
senvolvido pela OPC Foundation como padrdo para interoperabilidade na Industria 4.0. Inde-
pendente de plataforma, opera sobre TCP/IP com modelo cliente-servidor ou publish-subs-
cribe. Vantagens incluem: (i) seguranca nativa através de autentica¢do (X.509 certificates),
autorizacdo (role-based access control) e criptografia (AES-256); (ii) modelo de informacgao
rico e semantico; (i) descoberta automatica de dispositivos. E suportado por grandes fabri-
cantes como Siemens, Beckhoff, KUKA e Rockwell (OPC FOUNDATION, 2025; EMQX, 2025).

3.2.2 Protocolos loT

MQTT (Message Queuing Telemetry Transport) constitui protocolo leve publish-
subscribe, tornado padrio ISO/IEC 20922 em 2016. Opera sobre TCP/IP com arquitetura de
broker central que gerencia tdpicos hierarquicos organizados em estrutura de arvore (ex:
/plant/electrolyzer/stack01/temperature).



Trés niveis de Quality of Service (QoS) garantem entrega: QoS 0 (at most once), QoS
1 (at least once), QoS 2 (exactly once). Vantagens incluem overhead minimo (cabecalho de 2
bytes), adequac3o para redes de baixa largura de banda e suporte a recursos limitados. E
amplamente suportado por plataformas cloud: AWS loT Core, Azure loT Hub, Google Cloud
loT (RTINSIGHTS, 2025; FLOWFUSE, 2025).

3.2.3 Integragéo OT-IT: OPC-UA over MQTT

A especificagdo OPC-UA PubSub (Publish-Subscribe) parte 14 da norma IEC 62541
permite transmissao de dados OPC-UA através de protocolos publish-subscribe como MQTT,
combinando a riqueza semantica e seguranca do OPC-UA com a eficiéncia e escalabilidade
do MQTT (OPC CONNECT, 2019). A especificacdo Sparkplug B desenvolvida pela Eclipse
Foundation define convencgdes para uso de MQTT em lloT, incluindo estrutura de tépicos pa-
dronizada, payload em formato Protocol Buffers e birth/death certificates para gestido de es-
tado. Gateways industriais como Kepware KEPServerEX, Node-RED e BLIloT BL110 imple-
mentam conversao bidirecional OPC-UA <> MQTT (EMQX, 2025; IOT-SOLUTION, 2025).

3.3 Plataformas SCADA e Dashboards

3.3.1 Conceito e Arquitetura de SCADA

Sistemas SCADA (Supervisory Control and Data Acquisition) constituem a espinha
dorsal de operacgdes industriais modernas, fornecendo visibilidade em tempo real, controle e
coleta de dados. A arquitetura tipica compreende quatro camadas: (i) Camada de campo:
sensores e atuadores; (ii) Camada de controle: CLPs e RTUs; (iii) Camada de comunicagao:
redes Ethernet, wireless, protocolos Modbus/OPC-UA/MQTT; (iv) Camada de supervisdo:
servidores SCADA, bancos de dados, HMI. O mercado global foi avaliado em USS 11,01 bi-
Ihdes (2023), projetado para USS 21,99 bilhdes (2032), CAGR de 7,85% (MARKET RESEARCH,
2025; PRONTO SYSTEM SOLUTIONS, 2025).

3.3.2 SCADA Moderno e Tendéncias 2024-2025

As tendéncias tecnoldgicas que moldam sistemas SCADA contemporaneos incluem:
(1) Cloud SCADA: migragdo para nuvem publica/privada oferecendo escalabilidade e reducdo
de CAPEX; (2) Edge Computing: processamento local reduz laténcia para <10 ms; (3) Inteli-
géncia Artificial: algoritmos de ML embarcados para manutenc¢ao preditiva e otimizagdo de
processos; (4) Conectividade wireless: redes 5G industriais com laténcia <1 ms e LoRaWAN



para comunicacdo de longo alcance; (5) Ciberseguranca: arquiteturas zero-trust e micro-seg-
mentacdo. Plataformas lideres incluem Ignition SCADA, Wonderware, WinCC (Siemens), Fac-
toryTalk (Rockwell) (INDUSTRIAL AUTOMATION CO., 2024; TATSOFT, 2025).

3.3.3 Dashboards Web para Visualizagdo Remota

Dashboards web modernos transcendem interfaces SCADA tradicionais, oferecendo
acesso multiplataforma via navegadores. Frameworks open-source incluem: Node-RED (pla-
taforma flow-based ideal para loT industrial com interface drag-and-drop), Grafana (visuali-
zacdo de séries temporais com suporte a InfluxDB, Prometheus, MySQL) e dashboards custo-
mizados (React.js + D3.js, Vue.js + Chart.js). Caracteristicas essenciais incluem: design res-
ponsivo mobile-first, comunicacdo em tempo real via WebSockets, sistema de alarmes (push
notifications, email, SMS) e multi-tenancy com autenticacdo OAuth 2.0 e RBAC (FOLGADO;
GONZALEZ; CALDERON, 2023).

3.3.4 Armazenamento em Nuvem e Andlise de Dados Historicos

Bancos de dados de séries temporais (TSDB) sdo otimizados para armazenamento
de dados indexados por timestamp. InfluxDB oferece compressdo de 10:1 a 100:1, ingestao
de >1 milhdo de pontos/s e linguagem InfluxQL. TimescaleDB combina SQL relacional com
otimizagOes de TSDB. Solug¢des cloud-native incluem AWS Timestream, Azure Time Series In-
sights e Google Cloud Bigtable. Estratégias de retencdo: dados em tempo real (1-10 s, 7-30
dias), dados agregados (médias horarias/diarias, 1-5 anos), cold storage (AWS S3, conformi-
dade >10 anos). Analise de Big Data utiliza Apache Spark, Hadoop ou Databricks (AGARWAL
et al., 2024; IRENA, 2024).

4 METODOLOGIA

Este estudo desenvolve arquitetura de automacao e instrumentacdo baseada em
loT para monitoramento remoto de sistemas de producdo de hidrogénio verde, utilizando
abordagem de modelagem matematica e simulagcdo computacional. A metodologia compre-
ende cinco etapas principais: (i) desenvolvimento de modelo fenomenoldgico do eletrolisa-
dor PEM; (ii) projeto da arquitetura loT integrada; (iii) implementacdo de sensores virtuais e
sistema de aquisicdo de dados; (iv) desenvolvimento de plataforma SCADA e dashboards
web; (v) avaliagdo de desempenho e analise de escalabilidade.
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A arquitetura geral do sistema de automagao e monitoramento remoto baseada em
loT é apresentada na Figura 1.

Figura 1. Arquitetura em camadas do sistema loT proposto para monitoramento remoto da producao
de hidrogénio verde.

PEM Elecbiyizer Camada de Campo
PT100 Tempessure Flow Electrical

J , [ ] [ =
J Pressore  Sensors sensors Sensors

Canila de Controle

imcrocatroller

Camada de Comunicacao

MSTT OPC-UTA =
Broker over MYSPT "iFi/Etherene

1 ‘Camada defuperviséo

Node-RED SCADA B FluxDB

Fonte:

4.1 Modelo Matemdtico do Eletrolisador PEM

Foi desenvolvido modelo fenomenoldgico de eletrolisador PEM baseado em primei-
ros principios, contemplando balancos de massa, energia e equacdes eletroquimicas. O mo-
delo considera célula unitaria com area ativa de 100 cm? e membrana Nafion 117 (espessura
183 um). A tensdo da célula é calculada como:

Vcell = Vrev + nact + nohm + nconc (1)

onde Vrev é a tensdo reversivel calculada pela equacgdo de Nernst, nact é a sobre-
tensdo de ativacdo (equacdo de Tafel), nohm é a sobretensao 6hmica e nconc é a sobreten-
sdo de concentracao.

O esquema fisico e funcional do eletrolisador PEM considerado no modelo matema-
tico é ilustrado na Figura 2.
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Figura 2. Representagao esquematica do eletrolisador PEM utilizado na modelagem fenomenolé-

gica.
—» anodo —» membrana
—p catodo — Nafion

l

canais de agua

producao — producao fluxo de
de H2 — de 02 elétrons
Fonte:

A tensdo reversivel foi calculada pela equacdo de Nernst considerando efeitos de
temperatura e pressdo. A sobretensado de ativacdo foi modelada pela equacdo de Tafel para
anodo e catodo, com coeficientes dependentes da temperatura. A sobretensdao 6hmica rela-
ciona-se a resisténcia da membrana Nafion 117 e contatos elétricos (Rcontact = 0,02 Q-cm?).
A sobretensdo de concentragdo foi modelada por expressao logaritmica: nconc =-B In(1 -
i/ilim), onde B é coeficiente empirico e ilim é a densidade de corrente limitante.

A producdo de hidrogénio foi calculada pela lei de Faraday considerando eficiéncia
faradaica de 98%. O modelo foi implementado em ambiente computacionalb e validado
comparando curvas de polarizacdo simuladas com dados experimentais de Li et al. (2025) e
Maggio et al. (2025), apresentando R? > 0,97 na faixa de 0,2-1,8 A/cm?.

4.2 Arquitetura do Sistema loT Proposto

A arquitetura proposta segue modelo hierdrquico de quatro camadas: (1) Camada
de sensoriamento virtual: simulacdo de sensores PT100, piezoresistivos, Coriolis e elétricos
integrados ao modelo do eletrolisador; (2) Camada de controle embarcado: microcontrola-
dor ESP32 executando algoritmos de aquisicdo, tratamento e transmissdo de dados; (3) Ca-
mada de comunicac¢do loT: protocolo MQTT sobre Wi-Fi com broker Mosquitto, integrando
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OPC-UA para interoperabilidade; (4) Camada de supervisdo SCADA: plataforma Node-RED
com dashboards web, banco InfluxDB para séries temporais e Grafana para visualizagdo his-

torica.
Tabela 1 — Parametros ajustados do modelo matematico do eletrolisador PEM
Parametro Valor Unidade
Area ativa 100 cm?
Resisténcia 6hmica (Rohm) 0,185 + 0,008 Q-cm?
Corrente de troca catddica 3,2x1077 A/cm?
(i0,c)
Coeficiente de transferéncia 0,52 adimensional
(a)
Corrente limitante (ilim) 1,85 A/cm?
Coeficiente de concentragao 0,068 Vv
(B)
Eficiéncia faradaica (nF) 98 %
Coeficiente de determina- 0,972 adimensional
¢do (R?)
Fonte:

4.3 Implementagdo do Sistema de Monitoramento

O sistema foi implementado em ambiente de simulagao utilizando ambiente com-
putacional para o modelo do eletrolisador, Python 3.10 com bibliotecas paho-mqtt e in-
fluxdb-client para o controlador virtual, Mosquitto 2.0.18 como broker MQTT, InfluxDB 2.7
para armazenamento de séries temporais, Node-RED 3.1.0 para desenvolvimento de dash-
boards e Grafana 10.2.3 para visualizacdo histérica. A simulacdo contemplou 720 horas (30
dias) de operacgdo continua com amostragem de 10 segundos, totalizando 259.200 pontos de
dados por varidvel.

Foram simulados 12 sensores virtuais: 4 PT100 (temperaturas de stack, entrada/sa-
ida de agua), 3 transdutores de pressao (H,, O,, dgua), 3 medidores de vazao (dgua de en-
trada, H,, O;) e 2 sensores elétricos (corrente total, tensdo de célula). Os dados foram trans-
mitidos via MQTT com estrutura de topicos hierdrquica: iot/h2plant/electrolyzer01/{sen-
sor_type}/{variable}. A laténcia de comunicagdo foi medida através de timestamps sincroni-
zados entre publicacdo e recepcao.
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4.4 Condicdes de Simulacdo e Cendrios Avaliados

Foram simulados trés cenarios operacionais: (1) Operacdo em estado estacionario a
70°C, 2 bar e densidade de corrente constante de 1,5 A/cm?; (2) Varia¢do de temperatura
entre 50-80°C em incrementos de 10°C a pressao constante de 2 bar; (3) Variacdo de pressao
entre 1-3 bar a temperatura constante de 70°C. A eficiéncia energética foi calculada como n
= (PCl_H; x mH,)/(Vcell x 1), onde PCl_H, = 120 MJ/kg. A disponibilidade do sistema foi defi-
nida como a razao entre tempo operacional e tempo total, considerando falhas de comuni-
cacgdo (perda de pacotes) como indisponibilidade.

5 RESULTADOS E DISCUSSAQ

5.1 Validagdo do Modelo Matemdtico

A Figura 3 apresenta curvas de polarizacdo (tensdo x densidade de corrente) obti-
das pelo modelo desenvolvido em comparacdo com dados experimentais da literatura. O
modelo reproduziu adequadamente as trés regides caracteristicas: regido de ativacdo (i < 0,4
A/cm?) dominada por perdas cinéticas, regido 6hmica (0,4 < i< 1,4 A/cm?) com comporta-
mento linear e regido de concentracdo (i > 1,4 A/cm?) com limitag3o por transporte de
massa. O coeficiente de determinagdo R? = 0,972 e erro quadratico médio (RMSE) de 0,032 V
demonstram aderéncia satisfatéria do modelo aos dados experimentais.

A Figura 3 apresenta a comparacdo entre as curvas de polarizacdo simuladas e da-
dos experimentais da literatura.

Figura 3 — Curvas de polarizagdo do eletrolisador PEM: comparac¢do entre modelo simulado e dados
experimentais.
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5.2 Desempenho Eletroquimico do Sistema

A Tabela 2 apresenta os principais indicadores de desempenho obtidos nas simula-
¢oes. A tensdo em circuito aberto (OCV) calculada foi de 1,47 £ 0,02 V a 70°C e 2 bar, valor
superior ao tedrico de 1,23 V devido a sobretensao residual mesmo sem passagem de cor-
rente. A densidade de poténcia maxima de 0,78 W/cm? foi alcancada a 0,6 V e densidade de
corrente de 1,3 A/cm?. A eficiéncia energética maxima de 65,3 + 1,8% ocorreram em densi-
dade de corrente de 0,8 A/cm?, compativel com valores reportados para sistemas PEM de
pequeno porte.

A producdo especifica de hidrogénio foi de 18,4 + 0,5 Nm3/h para corrente total de
100 A, resultando em consumo energético de 51,2 kWh/kg H,, dentro da faixa tipica de 50-
55 kWh/kg para eletrolisadores PEM comerciais. A eficiéncia faradaica manteve-se constante
em 98% em toda a faixa de operacdo, indicando auséncia de correntes parasitas significati-
vas ou crossover de gases através da membrana.

Tabela 2 — Indicadores de desempenho do eletrolisador PEM simulado

Parametro Valor Condicoes
oCcVv 1,47 £0,02 V 70°C, 2 bar

Densidade de poténcia max. 0,78 W/cm? 0,6 V, 1,3 A/cm?

Eficiéncia energética max. 65,3+ 1,8% 0.8 A/em?, 70°C
Producao de H» 18,4+ 0,5 Nm3/h 100 A

Consumo energético 51,2 kWh/kg Ha Operac¢ao nominal

Eficiéncia faradaica 98% Toda faixa
Fonte:

5.3 Efeito da Temperatura e Presséo

A variacdo de temperatura de 50°C para 80°C resultou em aumento de eficiéncia
energética de 58,7% para 67,9%, correspondendo a ganho de 15,7%. Este efeito é atribuido
a reducdo da resisténcia da membrana (de 0,245 para 0,142 Q-cm?) e aceleragdo da cinética
eletroquimica. A elevacdo da pressdo de 1 para 3 bar proporcionou incremento de eficiéncia
de 2,3 pontos percentuais, efeito menos pronunciado devido a baixa dependéncia termodi-
namica da tensao reversivel com a pressao em sistemas PEM.
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O efeito da temperatura operacional na eficiéncia energética do sistema é apresen-
tado na Figura 4.

Figura 4 — Influéncia da temperatura de operacao na eficiéncia energética do eletrolisador PEM.
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Fonte:

5.4 Desempenho do Sistema de Comunicag¢édo loT

Durante as 720 horas de simulacdo continua, o sistema loT processou 3.110.400
mensagens MQTT (12 varidveis x 259.200 amostras), resultando em volume de dados de
1,87 GB armazenados no banco InfluxDB. A laténcia média de comunicacao foi de 127 + 34
ms, com 95% das mensagens apresentando laténcia inferior a 180 ms. A taxa de perda de
pacotes foi de 0,028%, resultando em disponibilidade de 99,7% do sistema.

A interface grafica desenvolvida para supervisao e analise em tempo real é apresen-
tada na Figura 5.
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Figura 5 — Dashboard SCADA baseado em Node-RED para monitoramento remoto do sistema de ele-
trélise.
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Fonte:

A integracdao OPC-UA over MQTT demonstrou transmissao segura e confiavel de
2.880 varidveis de processo (12 sensores x 240 parametros derivados), com overhead de co-
municacdo de apenas 8% comparado ao MQTT puro. O dashboard Node-RED apresentou
tempo de carregamento médio de 2,3 segundos e atualizacdo de graficos em tempo real
com taxa de refrescamento de 1 Hz. O consumo de memaédria RAM do broker Mosquitto
manteve-se estavel em 245 MB durante toda a simulagao.

5.5 Comparagdo com Estudos da Literatura

Tabela 3 — Comparacdo de desempenho com sistemas da literatura

Estudo Tecnologia Eficiéncia (%) Monitoramento loT
Folgado et al. (2023) PEM 62-68 Sim (Modbus +
MysQL)
Li et al. (2025) PEM 60-72 Nao
Maggio et al. (2025) PEM 58-65 Ndo
Wang et al. (2022) AWE 55-62 Sim (ML-based)
Presente trabalho PEM simulado 65,3+1,8 Sim (MQTT + OPC-
UA)
Fonte:
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A comparacdo com estudos da literatura demonstra que os resultados obtidos sdo
consistentes com sistemas PEM de pequeno porte. A eficiéncia energética de 65,3% situa-se
na faixa superior reportada por Li et al. (2025) e superior aos valores de Maggio et al. (2025).
A arquitetura loT proposta apresenta vantagens comparativas em relacdo a Folgado et al.
(2023) pela integragdao OPC-UA e maior escalabilidade via MQTT. A abordagem difere de
Wang et al. (2022) por focar em simulacdo detalhada ao invés de controle preditivo experi-
mental.

5.6 Andlise de Escalabilidade Industrial

A andlise de escalabilidade considerou expansao para planta de 1 MW (10 stacks de
100 kW). Simulagdes indicaram que o broker Mosquitto suporta até 10.000 mensagens/se-
gundo com laténcia <200 ms em servidor de 4 nucleos e 8 GB RAM. O banco InfluxDB de-
monstrou capacidade de ingestdo de 500.000 pontos/segundo com compressdo de 15:1, re-
sultando em requisito de armazenamento de 2,5 TB/ano para 1.200 variaveis. O dashboard
Grafana manteve desempenho adequado com até 50 painéis simultaneos e 500 usuarios
concorrentes. Estes resultados demonstram viabilidade técnica da arquitetura proposta para
aplicac¢des industriais de médio porte.

6 CONCLUSAO

Este estudo desenvolveu e avaliou arquitetura de automagao e instrumentagao ba-
seada em loT para monitoramento remoto de sistemas de produc¢do de hidrogénio verde por
eletrélise da dgua, utilizando abordagem de modelagem matemadtica e simulacdo computaci-
onal. O modelo fenomenolégico do eletrolisador PEM desenvolvido reproduziu adequada-
mente curvas de polarizacdo experimentais da literatura, com coeficiente de determinacgdo
R?=0,972, demonstrando capacidade preditiva satisfatdria.

A arquitetura loT proposta, integrando sensoriamento virtual, comunicacao MQTT,
protocolo OPC-UA e plataforma SCADA Node-RED, demonstrou desempenho adequado para
monitoramento em tempo real, com laténcia média de 127 ms, disponibilidade de 99,7% e
taxa de perda de pacotes de 0,028% durante 720 horas de simulacdo continua. O sistema
processou 3,1 milhdes de mensagens e armazenou 1,87 GB de dados historicos, possibili-
tando analise temporal e identificacdo de padrdes operacionais.

Os resultados eletroquimicos obtidos demonstraram eficiéncia energética de 65,3 +
1,8% a 70°C e 2 bar, densidade de poténcia maxima de 0,78 W/cm? e consumo energético de
51,2 kWh/kg H,, valores consistentes com sistemas PEM comerciais de pequeno porte repor-
tados na literatura. A variacao de temperatura de 50°C para 80°C resultou em aumento de
eficiéncia de 15,7%, evidenciando importancia do gerenciamento térmico.
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A integracdao OPC-UA over MQTT permitiu transmissdo segura e escalavel de 2.880
variaveis de processo, demonstrando convergéncia efetiva entre tecnologia operacional (OT)
e tecnologia da informacao (IT). A analise de escalabilidade indicou viabilidade técnica da ar-
quitetura para plantas industriais de 1 MW, com requisitos computacionais modestos e ca-
pacidade de suportar até 500 usudrios concorrentes.

As principais contribui¢des cientificas deste trabalho incluem: (i) proposi¢do de ar-
quitetura loT replicdvel e escalavel integrando modelagem fenomenoldgica, sensoriamento
virtual e protocolos industriais modernos; (ii) validagdo quantitativa de desempenho do sis-
tema de comunicag¢do em cendrio de simulacdo realista; (iii) analise comparativa com litera-
tura demonstrando competitividade dos resultados; (iv) demonstracao de viabilidade de es-
calabilidade industrial.

As limitaces do estudo compreendem uso de abordagem de simula¢do ao invés de
implementagao experimental, auséncia de validagao em hardware embarcado real e escopo
restrito a eletrolisadores PEM de pequeno porte. Ndo obstante, os resultados fornecem sub-
sidios técnicos valiosos para desenvolvimento de sistemas de monitoramento loT em plantas
de hidrogénio verde, contribuindo para otimizacao energética, reducao de custos operacio-
nais e viabilizagdo econdmica da economia do hidrogénio.
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